# Why and How DARPA/DSO Does Biology

Eric Eisenstadt



# 4 Billion Years of Biology





















### ~50 Years of Molecular Biology



•1953: Structure of DNA

•2000: Human genome sequence



# Improved DOD Capabilities via Biology

- •Health
- Operations
- •Materials synthesis

#### Frog eggs 1 mm 100 $\mu$ m -Eukaryotic cells $10 \mu m$ Nucleus of cell Most bacteria Mitochondrion $1 \mu m$ 100 nm -\_Viruses **CMOS** → Ribosomes 10 nm elements Proteins Lipids 1 nm -Small molecules 0.1 nm -\_\_Atoms

# Physical Maps to Bio







#### Info Maps to Biology

MEKVDIFKDIAERTGGDIYLGVVGAVRTGKSTFIK
KFMELVLPNISNEADRARAQDELPQSAAGKTIMT
TEPKFVPNQAMSVHVSDGLDVNIRLVDCVGYTVP
GAKGYEDENGPRMINTPWYEEPIPFHEAAEIGTRK
VIQEHSTIGVVITTDGTIGDIARSDYIEAEERVIEEL
KEVGKPFIMVINSVRPYHPETEAMRQDLSEKYDIP
VLAMSVESMRESDVLSVLREALYEFPVLEVNVNL
PSWVMVLKENHWLRESYQESVKETVKDIKRLRD
VDRVVGQFSEFEFIESAGLAGIELGQGVAEIDLYA
PDHLYDQILKEVVGVEIRGRDHLLELMQDFAHAK
TEYDQVSDALKMVKQTGYGIAAPALADMSLDEP
EIIRQGSRFGVRLKAVAPSIHMIKVDVESEFAPIIGT
EKQSEELVRYLMQDFEDDPLSIWNSDIFGRSLSSIV
REGIQAKLSLMPENARYKLKETLERIINEGSGGLIA

IIL







#### Deciphering Biology

•Interrogate and manipulate biological systems with modern physical devices



 Analyze, model and simulate with the full arsenal of math and computational tools

$$S_{\text{unreg}} = f'_{\text{unreg}}(R^*) = -k_{\text{deg}}$$

$$nk \ Pk \ ak$$

$$S_{\text{auto}} = f'_{\text{auto}}(R^*) = -\frac{nk_{\text{p}}Pk_{\text{I}}ak_{\text{r}}}{(1+k_{\text{p}}P+k_{\text{r}}R^*)^2} - k_{\text{deg}}$$





### [Bio:Info:Physical]





### DARPA's Bio:Info:Physical Program

- First phase of DARPA BioFutures
- Fundamental research at universities
- Interdisciplinary
- Attack fundamental limits of understanding complex biological systems via the development and application of new devices and new information tools



#### Two Major Themes

- Neuroprocessing and neurocontrol via high density implantable MEMS devices
- Measuring and modeling the dynamic behavior of biological regulatory networks in living cells







# The Cell is a High Information Content Sensor!

- Cell is unit machine in biology responsible for systems level processing
- Cells respond to environment in specific, reproducible and redundant ways
- Cell sensors do not require specific identification of threat
  - Processing will result in identification
  - Amplification of response
- Response is predictive of functional consequences





#### **Tissue Based Biosensors Program Concept**



#### **Physiological Biosensors**

Human Health Risk Assessment

 $seconds \longrightarrow minutes \longrightarrow hours \longrightarrow days \longrightarrow years$ 

- Is it chem or bio?
- Live vs. dead?
- Classification
- Known or unknown

- Physiological consequences of exposure?
- Functional response and mechanism of action?

- Long-term consequences of exposure?
- Genotoxicity?
- Human performance deficits?



## Nature's Metabolic Engineering

#### You've got questions?

We've got answers...

#### Performance Specs

- 37° to -5° C Core temps.
- Heart rate: 300 to 7 bpm
- CBF: down to 7% of norm.
- BMR down to <10% of norm.
- 94% genetic homology with humans



Arctic Ground Squirrel



# Natural Examples of Metabolic Control and Downregulation

Exploit the lessons learned from "Life on



• Recent discoveries in stasis strategies, genetics, and gene products now enable the development of a metabolic strategies and systems "toolbox".



#### Sequencing Pathogen Genomes

• A genome sequence is a cell's blueprint



 Annotating a genome sequence yields the identity of its unique and common molecular parts



 Knowing the molecular parts permits rational design of countermeasures and detection strategies





#### A New Era in Biology, a New Era for DARPA

Molecular anatomy

Where the parts are

 How the parts work as a system



DARPA's role will be to develop not only new understanding but, more importantly, new biologically inspired systems, tools and devices that enhance DoD and national security